×
Best practices for LLM-assisted software development
Written by
Published on
Join our daily newsletter for breaking news, product launches and deals, research breakdowns, and other industry-leading AI coverage
Join Now

LLM-assisted programming is emerging as a significant productivity enhancement tool, with developers discovering effective ways to integrate AI assistants into their coding workflow.

Core applications: LLMs are being utilized in three primary ways within the software development process.

  • Autocomplete functionality streamlines routine coding tasks by predicting and completing common programming patterns
  • Search capabilities surpass traditional web searches for programming queries, providing more contextually relevant results
  • Chat-driven programming enables interactive problem-solving sessions with the AI assistant

Optimal use cases: The effectiveness of LLM assistance varies significantly based on task characteristics.

  • Tasks with clear specifications and well-defined interfaces yield the best results
  • Projects involving multiple libraries or specific API requirements benefit from LLM guidance
  • Code generation works most efficiently for exam-style problems and contained programming challenges

Best practices: Several key principles have emerged for effectively leveraging LLMs in programming.

  • Developers should compile and test LLM-generated code before detailed code review
  • Breaking down complex tasks into smaller, well-defined components improves LLM performance
  • Additional code structure and package organization become more valuable when working with LLMs
  • Tedious refactoring tasks can be delegated to LLMs, freeing developers for higher-level work

Practical workflow: A systematic approach to LLM-assisted programming has proven most effective.

  • Begin by requesting initial implementation and basic test coverage
  • Review and correct any minor errors in the generated code
  • Iterate with the LLM to enhance test coverage and add features
  • Use compiler and tool feedback to guide further improvements

Future implications: The integration of LLMs into programming workflows is reshaping software development practices.

  • Code implementations are becoming more specialized rather than generic
  • Package management approaches are evolving to accommodate LLM-assisted development
  • Testing practices are growing more comprehensive and readable
  • New development environments, such as sketch.dev for Go programming, are being created to optimize LLM integration

Evolving landscape: The sustained impact of LLM integration in programming suggests a fundamental shift in software development practices, comparable to the transformative effect of always-on internet access, though developers must remain mindful of verification and testing requirements.

How I program with LLMs

Recent News

AI boosts SkinCeuticals sales with Appier’s marketing tech

Data-driven AI marketing tools helped L'Oréal achieve a 152% increase in ad spending returns and 48% revenue growth for SkinCeuticals' online store.

Two-way street: AI etiquette emerges as machines learn from human manners

Users increasingly rely on social niceties with AI assistants, reflecting our tendency to humanize technology despite knowing it lacks consciousness.

AI-driven FOMO stalls purchase decisions for smartphone consumers

Current AI smartphone features provide limited practical value for many users, especially retirees and those outside tech-focused professions, leaving consumers uncertain whether to upgrade functioning older devices.